Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
This paper is concerned with the numerical solution of the flow problem in a fractured porous medium where the fracture is treated as a lower dimensional object embedded in the rock matrix. We consider a space-time mixed variational formulation of such a reduced fracture model with mixed finite element approximations in space and discontinuous Galerkin discretization in time. Different spatial and temporal grids are used in the subdomains and in the fracture to adapt to the heterogeneity of the problem. Analysis of the numerical scheme, including well-posedness of the discrete problem, stability and a priori error estimates, is presented. Using substructuring techniques, the coupled subdomain and fracture system is reduced to a space-time interface problem which is solved iteratively by GMRES. Each GMRES iteration involves solution of time-dependent problems in the subdomains using the method of lines with local spatial and temporal discretizations. The convergence of GMRES is proved by using the field-of-values analysis and the properties of the discrete space-time interface operator. Numerical experiments are carried out to illustrate the performance of the proposed iterative algorithm and the accuracy of the numerical solution.more » « lessFree, publicly-accessible full text available November 4, 2025
-
Abstract We introduce and analyze a partially augmented fully mixed formulation and a mixed finite element method for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier–Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of fluid force, conservation of momentum and the Beavers–Joseph–Saffman condition. We apply dual-mixed formulations in both domains, where the symmetry of the Navier–Stokes and poroelastic stress tensors is imposed in an ultra-weak and weak sense. In turn, since the transmission conditions are essential in the fully mixed formulation, they are imposed weakly by introducing the traces of the structure velocity and the poroelastic medium pressure on the interface as the associated Lagrange multipliers. Furthermore, since the fluid convective term requires the velocity to live in a smaller space than usual, we augment the variational formulation with suitable Galerkin-type terms. Existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with nonmatching grids, together with the corresponding stability bounds and error analysis with rates of convergence. Several numerical experiments are presented to verify the theoretical results and illustrate the performance of the method for applications to arterial flow and flow through a filter.more » « less
An official website of the United States government
